8	ntroduction to Coordinates	Name :		()
U		Class :	Date :		
Works	heet for Classworks — §8.2				

Classwork 8.1 (page 8.7)

The figure shows points A to H on a rectangular coordinate plane.

- (a) Write down the coordinates of the points in the figure.
- (b) Which points have the *x*-coordinates equal to 0?
- (c) Which points have the *y*-coordinates equal to 0?

Solution:

(b)

Classwork 8.2 (page 8.8)

(a) Plot three points A(4, 3), B(4, 0) and C(4, -2) on a rectangular coordinate plane.

- (b) Join *AB* and join *BC*. Are *A*, *B* and *C* collinear?
- (c) Which coordinate axis is parallel to the line segment AC?

Solution:

Classwork 8.3 (page 8.9)

- (a) Plot the following points on a rectangular coordinate plane.
 - A(-1, 2), B(1, 0), C(4, 3), D(2, -4), E(0, -2), F(-1, -3), G(-2, -2), H(-4, -4), I(-6, 3), J(-3, 0)

- (b) Join the points according to the order A, B, C, D, E, F, G, H, I, J, A.
- (c) Write down the points lying in each quadrant.

Solution:

Classwork 8.4 (page 8.11)

- (a) Plot four points P(-2, 0.5), Q(0, -3.5), R(1.5, 1) and S(-2.5, -3) on a rectangular coordinate plane.
- (**b**) Join *PQ* and join *RS*.
- (c) Write down the coordinates of the intersection of PQ and RS.

Solution:

8	Introduction to Coordinates	Name :		()
		Class :	Date :		
Wor	ksheet for Classworks — §8.3				

Classwork 8.5 (page 8.18)

In each of the following, find the distance between the two given points.

(a) P(-2, 11), Q(13, 11)

Solution:

PQ = _____ units

= _____ units

(b)
$$R(-1, -24), S(-1, -16)$$

Solution:

RS = _____ units

= _____ units

Classwork 8.6 (page 8.18)

In the figure, the distance between *P* and *Q* is 11 units, and the distance between *Q* and *R* is 16 units.

- (a) Find the value of h.
- (**b**) Find the value of k.

Solution:

(a) PQ = 11 units_______ -h = 11 $h = _______$ **(b)**

Classwork 8.7 (page 8.19)

In the figure, a model car starts to move from P to T along line segments PQ, QR, RS and ST.

(a) Find the total distance travelled by the model car.

(b) It is known that the coordinates of U are (-2, -3). Find the perpendicular distance from U to QR.

Solution:

(a)

8	ntroduction to Coordinates	Name :		()
U		Class :	Date :		
Work	sheet for Classworks — §8.4				

Classwork 8.8 (page 8.25)

Consider the figure.

- (a) Find the perpendicular distance from R to PQ produced.
- (**b**) Find the area of ΔPQR .

Solution:

(a) Draw a point S on PQ produced such that $RS \perp SQP$.

 \therefore Area of $\Delta PQR =$

Classwork 8.9 (page 8.26)

Find the area of trapezium PQRS in the figure.

Classwork 8.10 (page 8.27)

Find the area of quadrilateral *PQRS* in the figure.

Classwork 8.11 (page 8.28)

Find the area of ΔPQR in the figure.

Solution:

Draw a rectangle *ABRC* such that *AC* and *BR* are horizontal line segments, *AB* and *CR* are vertical line segments.

8	Introduction to Coordinates	Name :		()
		Class :	Date :	2	
Wor	ksheet for Classworks — §8.5				

Classwork 8.12 (page 8.36)

The figure shows a polar coordinate plane.

- (a) Write down the polar coordinates of points A to F in the figure.
- (b) Plot $P(3, 105^\circ)$ and $Q(2, 255^\circ)$ on the polar coordinate plane.
- (c) Find $\angle AOP$ and $\angle COQ$.
- (d) Find the lengths of *BQ* and *CF*.

Solution:

(c) $\angle AOP = ____$

(**d**)

R Introduction to Coordinates	Name :		()
	Class :	Date :		
Worksheet for Classworks — §8.6				

Classwork 8.13 (page 8.42)

In the figure, ΔDEF is translated leftwards by 4 units and upwards by 3 units to obtain the image $\Delta D'E'F'$.

- (a) Draw $\Delta D'E'F'$ in the figure.
- (b) Find the coordinates of the vertices of $\Delta D'E'F'$.

Solution:

- (**b**) Coordinates of $D' = (_, _)$
 - Coordinates of $E' = (_, _]$

Coordinates of $F' = (_, _)$

Classwork 8.14 (page 8.45)

(a) In the figure, ΔSTU is reflected with respect to straight line L_1 to obtain the image $\Delta S_1T_1U_1$. Draw $\Delta S_1T_1U_1$ in the figure.

- (b) If $\Delta S_2 T_2 U_2$ is the reflection image of $\Delta S_1 T_1 U_1$ with respect to straight line L_2 , draw $\Delta S_2 T_2 U_2$ on the rectangular coordinate plane in (a).
- (c) Find the coordinates of T_2 .

Solution:

Classwork 8.15 (page 8.46)

In the figure, L_1 and L_2 are the vertical line and horizontal line respectively. B(-5, 9) is reflected with respect to L_1 to $B_1(p, 9)$, and B_1 is reflected with respect to L_2 to $B_2(q, r)$. Find the values of p, q and r.

Solution:

Perpendicular distance from *B* to $L_1 =$ _____ units

= _____ units

Classwork 8.16 (page 8.55)

Consider ΔDEF in the figure. ΔDEF is rotated about the origin through 180° to obtain the image $\Delta D_1 E_1 F_1$. $\Delta D_1 E_1 F_1$ is then reflected with respect to the y-axis to obtain the image $\Delta D_2 E_2 F_2$.

- (a) Draw $\Delta D_1 E_1 F_1$ and $\Delta D_2 E_2 F_2$ in the figure.
- (b) If ΔDEF can undergo 1 transformation to $\Delta D_2 E_2 F_2$, describe the transformation.

Solution:

(b)